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Building and Verifying
a Predictive Model of
Interruption Resumption
Help from a robot, to allow a human storyteller to continue after

an interruption, is explored; results indicate a bright future for

effective human–robot interaction.

By J. Gregory Trafton, Allison Jacobs, and Anthony M. Harrison

ABSTRACT | We built and evaluated a predictive model for

resuming after an interruption. Two different experiments

were run. The first experiment showed that people used a

transactive memory process, relying on another person to keep

track of where they were after being interrupted while retelling

a story. A memory for goals model was built using the ACT-R/E

cognitive architecture that matched the cognitive and behav-

ioral aspects of the experiment. In a second experiment, the

memory for goals model was put on an embodied robot that

listened to a story being told. When the human storyteller

attempted to resume the story after an interruption, the robot

used the memory for goals model to determine if the person

had forgotten the last thing that was said. If the model pre-

dicted that the person was having trouble remembering the

last thing said, the robot offered a suggestion on where to

resume. Signal detection analyses showed that the model

accurately predicted when the person needed help.

KEYWORDS | Cognitive robotics; cognitive science; human–

robot interaction; interruptions and resumptions

I . INTRODUCTION

As computers and machines become more intelligent, they

will need to deal more (not less) with people. As long as

people are Bin the loop[ autonomous systems will need to

interact with them, help them solve problems, keep them

on task, remind them of missed appointments, etc. If an

autonomous system can predict what a person needs and
when they will need it, that system will have better auto-

nomy and be a better system overall than a system that

cannot predict what a person will do. Unfortunately, the

vast majority of autonomous systems today are barely able

to interact with people in a simple manner, much less

predict what they are thinking and act upon it. Our pri-

mary goal in this paper is to show our approach to building

predictive models of human behavior, and how we use
computational cognitive models to improve human–robot

interaction.

The context we are focusing on is resuming after being

interrupted. With the rapid rise of communication tech-

nologies that keep people accessible at all times, issues of

interruptions and multitasking have become mainstream

concerns. For example, Time magazine [1] and the New
York Times [2] both reported stories about interruptions
and multitasking and how they affect performance. The

information technology research firm Basex issued a report

on the economic impact of interruptions, which they esti-

mated to be around $588 billion a year [3]. Given the

prevalence of interruptions, building systems that can help

remind an individual what they were doing or where they

were in a task can have a large impact on individual and

group productivity.
Being interrupted also greatly increases the number of

errors [4]. People will frequently repeat a step that has

already been performed or skip a step that needs to be
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performed after an interruption. Sometimes these errors
are irritating (e.g., destroying a meal by leaving out a cru-

cial ingredient), but sometimes they can have disastrous

consequences (e.g., taking medicine twice or not config-

uring the flaps for airplane takeoff). The research de-

scribed here is applicable to these domains, but this report

will focus on a common, everyday task: being interrupted

while telling someone a story or giving instructions. This

information-passing task is an excellent domain for
studying the interruption/resumption process for several

reasons. First, because it is so common to get interrupted

while talking to a friend, it is easy to collect data. Second,

providing ordered information to another person is a

general class of problems that include recipes, checklists,

story telling, direction giving, etc.

For example, in the middle of giving you instructions

on how to operate a new device, your friend needs to take
an important phone call for a few minutes. When she

comes back to tell you the rest of the instructions, what

does she do? If she cannot remember exactly where she left

off, you may remind her or she may resume where she

thought she left off (which may or may not be correct). If

your friend was telling you a story, she may simply start

somewhere close to where she left off. For the remainder

of the paper, we will focus on building a process model of
exactly what the interlocutor is doing as she attempts to

resume the conversation, then using that process model to

allow a robot listener to facilitate the interaction.

We will use two theoretical frameworks: transactive

memory [5] and the memory for goals (MFG) theoretical

framework that we have previously used to interpret how

subgoals are suspended and resumed in a problem-solving

task [6], [7] and which has since been used to interpret the
time costs of interruption [6]–[8], factors affecting post-

completion error [9], and sequence errors [4].

A. Transactive Memory
Transactive memory occurs when two or more people

work together on a common task. Each group member

becomes responsible for remembering certain items,

usually based on past experience. For example, spouses

spontaneously divide up things to remember based on past

history, areas of expertise, and context. The family gar-

dener, for example, will not only be able to remember the
names of different plants, but other members of the group

will expect the gardener to remember those plants (and

whether they need to be removed), and so will not commit

resources to remember that information. The overall effect

here is that the group as a whole can systematically re-

member more than any individual.

B. The Memory for Goals Model
MFG is a theory about how people remember and re-

trieve goals. It has been instantiated in the cognitive archi-

tecture adaptive control of thoughtVrational/embodied

(ACT-R/E) [10]–[13] that is shown in Fig. 1. ACT-R/E will

be described first to provide some context for MFG.
ACT-R/E is an embodied version of ACT-R [10], [11]. It

consists of a set of modules, each specialized to process a

different type of information. For example, the goal mod-

ule keeps track of current intentions, the declarative mod-

ule retrieves information from memory, the imaginal

module keeps track of intermediate products, the tempo-

ral module estimates how much time has passed, the visual

module identifies objects in the visual field, the aural buf-
fer hears sounds in the auditory field, the vocal module

speaks, the motor module moves the body, and the con-

figural and manipulative modules perform spatial proces-

sing [14]–[16]. The procedural module is a production

system which responds to what is in the buffers at any

given time step.

ACT-R assumes a mixture of parallel and serial pro-

cessing. Each module operates in parallel: the visual sys-
tem is processing the entire visual field; the declarative

memory system is searching for a specific memory in

parallel, etc. However, there can only be a single object in

each buffer at one time. The basic cycle consists of the

contents of all the buffers being matched against the rules

stored in procedural memory. A single rule is then chosen

on the basis of its utility (the rule that has the lowest

expected cost while having the highest expected probabil-
ity of succeeding), and this rule carries out a set of actions,

which it communicates to the other modules through their

respective buffers. More detailed information about ACT-R

is available elsewhere [10], [11], [17]. The MFG model is

focused on the declarative module, so that module will be

described in some detail.

All memories in MFG have an activation associated

with them. The MFG model inherits two basic processing
assumptions from ACT-R. The first is that when central

cognition queries memory, memory returns the relevant

Fig. 1. Schematic of ACT-R/E.
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item that is most active at that instant. The second is that
the activation of a given memory element fluctuates noisily

from moment to moment about a mean value. Activation

of a memory element has three components: history, con-

text, and noise. The history of a memory element is de-

fined in [7]

m ¼ ln
n

T�d

� �
þ ": (1)

m is the activation of the memory element, n is how

often the memory has been sampled over its lifetime, T is

the length of the goal’s lifetime from encoding to present,

and d is the decay rate. " is activation noise, which governs

the variance of the zero-mean logistic noise distribution

sampled for the activation of each control code on each

system cycle. Thus, as a memory is sampled or strength-
ened or rehearsed, it gains in activation. As time passes, it

loses activation. In order to remember a memory element

that does not have the highest absolute activation (e.g., a

very recent memory), priming through context (instanti-

ated through simple co-occurrence of cues) associatively

links different memory elements and boosts an element’s

activation [7]. In the current model, these memory ele-

ments are episodic codesVa memory of an individual
event that can then be remembered later. To retrieve a

memory element, the system makes a request (e.g., what

did I have for breakfast this morning?) and the most active

element matching those specifications is retrieved.

Episodic codes serve the place-keeping function of in-

terest as the storyteller tells the story. These episodic codes

have been used in models of task switching [18] and well-

known procedural tasks [4]. While executing a well-known

task (e.g., making coffee or tea), the model posits that
people create an episodic code each time a step is exe-

cuted. For example, separate episodic codes are created as

a person pours hot water into a cup, puts a teabag into the

cup, and adds sugar to their tea.

Here, we assume that as a story is retold, the system

consults its declarative knowledge, which we assume is

well learned (e.g., the story is known to the teller and not

being made up on the fly), uses that knowledge to create an
episodic memory of the retelling, and uses that episodic

memory to guide its telling of the story. This episodic code

essentially represents the information, Bthis is where I am

in the story,[ and serves as a reference point for any

component process that may have to run in the course of

that step. While in theory the episodic code could code any

level of granularity, we assume that people encode the gist

of the story [19]–[21], not the low level features (e.g., the
specific words), so episodic codes in this context contain

gist information. Because these episodic codes decay, the

current one will always be the most active (modulo effects

of activation noise), so any process can reliably assume that

whatever code it retrieves is where in the story-retelling

process it is.

After an interruption, the system can use an episodic

code to regain its place in the story. Here we assume
that the interruption most often occurs between gist

componentsVthat is, after one part of the story has com-

pleted and before the next has begun. This assumption is

incorporated in the model, such that, after an interruption,

the model assumes that the episodic code it retrieves was

for the most recently completed gist.

Sometimes, of course, people will continue a story at a

place that is not exactly where they left off. The MFG
model (see Fig. 2) makes a specific prediction about the

pattern of results that should occur. After an interruption,

Fig. 2. Schematic of the MFG model. For each discrete goal step (retelling a gist element from the story), the model retrieves the next gist element

(a), creates and encodes an episode for that gist (b), immediately retrieves that episode (c), then executes the step by telling the gist (d).

Step repeats are due to incorrect retrievals at (c), whereas skips are due to interruptions at (d).
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the system retrieves an old episodic code and assumes that
it represents the most recent gist. Most of the time, this

assumption will be correct. Sometimes, however, an older

episodic code will intrude, even though it is more decayed

than the most recent old code, due to noise in activation

levels. In this case, the model will repeat something that it

has already said. For example, if the second-most recent

episodic code is retrieved, the storyteller will tell the last

two gist events over again to the listener. From a social or
functional perspective, this is probably beneficial because

the listener will be given context for where the story is

before continuing on to the parts that had not been heard

before. Thus, the MFG model predicts that the storyteller

should repeat the last thing that was said the majority of

the time, occasionally repeat previous gist items, and only

rarely actually skip to a part of the story that had not been

told yet.
Occasionally the episodic code will have decayed so

much that it will be very difficult to retrieve. In extreme

cases (e.g., an interruption that lasted three days), the

episodic code will have decayed so much that it is ex-

tremely difficult or impossible to retrieve. The storyteller

in these cases may just start over. In less extreme cases, the

storyteller may need to try different internal cues or work

up to where they were in order to continue the story.

II . EXPERIMENT 1

Our primary goal with this experiment was to explore how

people resumed telling a story after being interrupted and

to determine where they resumed after being interrupted.

A confederate listener was used so that we could make sure

that the listener would behave in the same manner across
conditions and participants. We also were interested in

how long it would take for people to resume.

A. Method

Participants: Forty three undergraduate George Mason

University students participated for course credit. All par-

ticipants were female to match the gender of the confe-
derate listener. Four participants asked to have their data

destroyed after the experiment, leaving a total of 39 parti-

cipants. The average age of participants was 19.7 years old.

Task and Materials: Each participant was asked to read

three total pages of a soap-opera-like story. The first two

pages (six paragraphs, 1164 words) were the primary story.

The last page (three paragraphs, 494 words) was the inter-
rupting task. The participant’s task was to read the story,

then retell the story.

Design and Procedure: The design of this experiment

was a between-participants 2 (person, video camera) �
2 (interrupted, control). Participants in the control condi-

tion were run to verify that the location of the interruption

was not an especially difficult part of the story. Only
13 participants were run in the control conditions; every-

one else was in the interruption condition.

Participants in the person condition were introduced to

another Bparticipant[ (actually a confederate) and were

given either two (in the interruption condition) or three

(in the control condition) pages of a story to read. After

they had finished reading the story, they retold the story to

the confederate.
After retelling approximately two-thirds of the primary

story, participants in the interruption condition were in-

terrupted by the experimenter at a predetermined loca-

tion. The experimenter told these participants that the

third page of the story had been accidentally separated

from the first two pages. She asked them to stop retelling,

read the third page, and then to resume telling the primary

story from the point where they had been interrupted.
During the interruption, the confederate quietly sat and

waited until the participant had finished reading the third

page. When the participant retold the story, the confed-

erate did not help in any way, even if asked. Participants in

the control condition were given all three pages to read

and were not interrupted. In both conditions, the confe-

derate nodded and showed interest throughout the entire

story retelling.
Participants in the video-camera condition were told

that they were telling the story to a video camera, and that

the film would be shown to another participant at a later

date. Half the participants were interrupted and half were

not interrupted at all.

All participants were videotaped. After debriefing, they

could choose to have their videotape destroyed. Four par-

ticipants (one from each condition) asked for their video-
tapes to be destroyed, which occurred immediately.

Measures and Coding: Resumption lag (RL) was coded as

the time from the end of the interruption (or the intended

point of interruption in the control conditions) until the

participants began to fluently resume the primary story.

Interruption duration was coded for those participants in

the interruption conditions as the time between the start
of the interruption and the end of the interruption.

Participants in the interruption condition had their

videotapes transcribed right before the interruption and

right after the interruption. Participants in the control

condition had their videotapes transcribed right before the

interruption location through the next gist item that they

described. Three utterances before and three utterances

after the interruption location were transcribed for all
participants.

Participants’ utterances were classified by whether

they appeared to need help at the resumption point and

where they actually resumed when they did resume.

Participants were coded as needing help if they asked

for help (either to the confederate or to themselves), stat-

ing that they did not remember where they were, or using

Trafton et al. : Building and Verifying a Predictive Model of Interruption Resumption
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a large number of speech disfluencies or fillers (e.g.,
Bsoooooo,[ Buhhhh,[ Bummmm,[ etc.) that were not pre-

sent before the interruption. All participants were even-

tually able to resume the story at some point, yet not

always at the correct resumption point.

To code the location of the resumption, we coded the

gist of the story around the interruption location, and

marked it as either Brepeat[ (e.g., a gist utterance that was

a repeat of what had already been said), Bcorrect[ (e.g., the
next gist that occurred in the story) after the last thing that

was uttered), or Bskip[ (e.g., an utterance that skipped the

correct resumption gist).

B. Results
The empirical results were analyzed using an analysis

of variance (ANOVA). In the following analyses, the F
statistic is used for testing the differences between groups
(with degrees of freedom in parentheses), the numerical

value of the statistic, a report of the mean square error

(MSE; a measure of variability), and the probability of the

result occurring by chance [either less than 0.05 or not

significant (n.s.)]. A post-hoc analysis using the Holm test

was used to highlight where any differences occur if there

are more than two groups.

When the data were frequency based, a chi-square
analysis was used, which deals with nonparametric data

more robustly than an ANOVA.

Interruption Duration and Resumption Lag: Participants

who got interrupted spent approximately the same amount

of time reading the interrupted story (M ¼ 229.5 s), whe-

ther they were telling the story to a person (M ¼ 242.7 s),

or telling the story to a video camera [M ¼ 222:6,
Fð1; 24Þ ¼ 0:6, MSE ¼ 8351, n.s.]. Not surprisingly and

consistent with previous research, participants who got

interrupted took longer to resume than participants who

did not get interrupted [Fð1; 35Þ ¼ 11:9, MSE ¼ 81:9,

p G 0:05]. As Table 1 suggests, however, neither the effect

of listener [Fð1; 35Þ ¼ 0:7, MSE ¼ 81:9, n.s.] nor the in-

teraction between listener and interruption [Fð1; 35Þ ¼
0:1, MSE ¼ 81:9, n.s.] approached significance. In terms of
response time, there was a strong impact of the

interruption, but no effect at all of who the participant

was telling the story to.

Needing Help: To establish inter-rater reliability (IRR),

one coder coded all the data for disfluencies and decided

whether that individual needed help. A second coder then

coded 67% of the participants, also making a decision on

whether each individual needed help. The two coders

agreed 88% of the time, � ¼ 0:76, z ¼ 3:9, p G 0:01. A

kappa of 0.76 is considered extremely good. Disagree-

ments were resolved through discussion. This coding

showed that the coders could reliably agree when a

participant needed help (or would have appreciated

someone reminding them what they had said last). Table 2
shows two examples of people who seemed to need help

and two examples of people who were able to resume

without problems.

All participants who were not interrupted were able to

tell the story smoothly and without disfluencies, suggest-

ing that the location chosen for the interruption was not an

especially difficult part of the story. Of the participants

who did get interrupted, 77% of the participants who told
the story to a person asked for or needed help, while only

35% of the participants who told the story to a video

camera acted like they needed help; this difference was

statistically different, �2ð1;N ¼ 26Þ ¼ 4:2, p G 0:05. As

Fig. 3 suggests, participants who were not interrupted

were fluent at retelling the story at the location that parti-

cipants in the interruption condition were interrupted, but

the interruption caused an increase in RL, omnibus
ANOVA Fð2; 36Þ ¼ 21:4, MSE ¼ 49:7, p G 0:001. Specif-

ically, participants who did not need help were slower at

resuming the story than participants in the control condi-

tion (Holm adjusted p G 0:01) and faster than participants

who did need help (Holm adjusted p G 0:01). Participants

who did need help were also much slower than partici-

pants in the control condition (Holm adjusted p G 0:01).

Where People Resumed: After participants resumed,

where in the story did they resume? As Fig. 4 suggests,

participants did not differ in their resumption patterns if

they needed help or not [�2ð2;N ¼ 26Þ ¼ 0:25, p ¼
0:88], nor were there any differences in whether the

participant told the story to a video camera or a person

[�2ð2;N ¼ 26Þ ¼ 1:2, p ¼ 0:56]. Participants did, how-

ever, resume more frequently by repeating what they had
already said than resuming at the Bcorrect[ location or

Table 1 Means and Standard Deviation (in Parentheses) of the

Resumption Lag for All Four Conditions. All Measures Are in Seconds

Table 2 Example Utterances of Participants Needing Help and

Not Needing Help
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skipping one or more story gist statements, omnibus

�2ð2;N ¼ 26Þ ¼ 19, p G 0:05; Holm adjusted ps G 0:05.

This pattern of results is consistent with the MFG account

that people will attempt to remember the last episodic

code they talked about and resume from there.

C. Discussion
In summary, people had no problem retelling a story

they had just read when there was no interruption. When

there was an interruption, however, people took longer to

resume than when there was not an interruption, though it

did not matter if the person was telling the story to a

physically present listener or simply to a video camera. If

the story was being retold to a physically present person,
the storyteller did want help from the listener more than

75% of the time. Interestingly, when people needed help,

they seemed to have a much harder time remembering

where they should resume as shown by the fact that it took

them more than three times as long to be able to continue

the storytelling as people who did not need help. When

people did resume, they typically repeated part of the story

they had already described.
Consistent with a transactive memory approach, people

relied on their partner when there was a partner available.

The speaker evidently assumed that the listener would be

able to help. This strategy was unsuccessful because the

confederate was instructed not to help the participant, but

the result certainly shows the willingness of the storyteller

to use a different memory source. When there was no one

to rely on (e.g., when they were telling the story to a video
camera), the storyteller needed help much less often. This

result suggests that when there is no one to help them

remember the last thing they said, people will use their

own memory processes rather than rely on someone else’s.

These results are also broadly consistent with an MFG

approach. Generally, people create an episodic trace as

they retell a story, and after an interruption they attempt

to remember where they were by retrieving this episodic
trace. The MFG model’s prediction that when people

resume, they will usually repeat the last thing they said was

confirmed in this data set. To capture the details of this

resumption process, an MFG model was created.

III . MODEL DESCRIPTION

We used the MFG framework described earlier to develop
a cognitive simulation of the storytelling task.

The model has a moderately lean representation of the

processing that occurs during the storytelling task. Human

participants must iteratively recall the gist of the next story

element from memory and then elaborate upon that

element with any relevant details. This process is repeated

until the story is complete or the individual is interrupted.

The elaboration process is primarily one of natural lan-
guage generation and not the focus of this work. Instead

we focus on the process of creating, storing, and recalling

each gist element with a focus on resumption after an

interruption.

MFG postulates that at each discrete step in the exe-

cution of a task, an episodic control code is created

[Fig. 2(b)]. This episodic tag effectively marks the position

in the task by virtue of its existence in declarative memory.
The episodic tags effectively create an associatively linked

list of markers to completed steps in a task. If an inter-

ruption occurs, the episodic tag can be used to return to

that point in the task. At resumption time [Fig. 2(c)], the

model attempts to retrieve the most active episodic tag for

that particular gist. If successful, it will use that tag and the

associated gist element to retrieve the next to-be-reportedFig. 4. Where participants resumed.

Fig. 3. The amount of time it took people to resume (bars) and ACT-R/E

model fits (circles). Error bars are 95% confidence intervals.
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gist element, allowing the model to continue the task
[Fig. 2(d)]. The model does not check to see if the episodic

tag is, in fact, correct. If the model fails to retrieve the

relevant episodic control code, one of two options is

available to the model. If there is a listener available, the

model will merely ask for help. If, however, there is no

listener available, the model will try again to remember an

episodic tag, and will make repeated attempts until it

successfully retrieves an episodic tag. This model provides
a process description of transactive memory: the listener

can serve as another memory source, but is only used if the

person cannot remember themselves.

As described earlier, the model depends critically upon

the basic properties of declarative memories. When a

retrieval is requested, the matching chunk with the highest

activation is returned [Fig. 2(a) and (c)]. The activation of a

chunk depends upon the recency and frequency of that
chunk’s use [see (1)], in addition to a contextual element

(i.e., priming) and stochastic noise. Immediately after

encoding, episodic tags have very high activations, but

they decay quite quickly after that. Retrieval during

uninterrupted performance [Fig. 2(c)] is facilitated by the

contextual priming through activation spreading from the

current focus of attention (the priming constraint from [7]).

As a tag’s activation decays, other tags may, temporarily,
outrank it as noise effects become more significant. This

error gives rise to the repeats seen in the storytelling data.

Single-step skip errors seen in the data arise due to when

the interruption occurs. If the interruption occurs after

episodic tag encoding, but before communicating the gist,

the correct tag may be retrieved even though the step was

not actually completed [Fig. 2(d)]. Not surprisingly, this

predicts that the chance of a failing to retrieve the correct
episodic control code increases with the duration of the

interruption.

The model currently does not account for the reading

and encoding of the story. Rather, we assume that the gist

of the story is perfectly recalled and that the errors

observed are due to episodic failures, not knowledge gaps.

Since the interruption in the behavioral study was to read

subsequent story sections, the model simply waits for the
average amount of time subjects spent reading the last

section (approximately 230 s). Because the duration of the

interruption varied from subject to subject, the model

makes use of ACT-R’s temporal module [22]. The temporal

module provides some variability in time estimation, al-

lowing some robustness to the interruption duration mea-

sure. In this context, we assume that the interrupting task

itself does not directly impact the error rate; it is the time
spent away from the primary task that increases the proba-

bility of making an error.

Several model parameters interact to affect the be-

havior described above, all of them affecting activation

dynamics. Activation noise ð"Þ in (1) is set to 0.25. In-

creasing the activation noise allows prior episodic tags to

intrude more frequently. A second parameter is the decay

rate [d in (1), set to the default value 0.5]. The decay rate
controls the speed with which activations deteriorate with

time. The faster the decay, the more sensitive the model

will be to the duration of the interruption. A third param-

eter is priming (set to 1, described in more detail in [7])

which provides contextual priming to help retrieve the

relevant control code. Strengthening the priming makes

the retrieval of episodic tags more robust, by strengthening

the immediate context’s (i.e., the goal) effect on the
episodic tag’s activation. Finally, the retrieval threshold

for declarative memory (set to �1.1 from the default

value of 0) allows ACT-R to devote more time to retrieving

a memory than it normally would. These parameters are

well within the range of values usually used within the

ACT-R community. Sensitivity analyses have shown that

the qualitative data pattern is stable over a large parameter

space.
To reproduce the empirical data, we ran 2000 simu-

lated trials with a (virtual) listener available and 2000

simulated trials with no listener available. The primary

measures of interest were how long the model spent on the

interruption, how often the model asked for help when a

person was available, and how long it took to resume both

when a listener was available and when a listener was not

available.

A. Model Fit
Recall that participants took an average of 230 s to read

the last page of the story. We set the temporal module to

wait for an average of 227 s. This was an important aspect

of the model’s success because the model’s ability to re-

trieve an episodic code depends critically on the amount of

time spent on the interruption.
Also recall that, when there was a listener available, the

participant asked for help or acted like they wanted some

help 77% of the time. When the model attempted to re-

trieve an episodic code after the interruption, it was unable

to do so 80% of the time. After this first failure, since there

was a listener available, the model asked for help. When

the model did retrieve an episode, the episode was correct

or a simple repeat the vast majority of the time.
Probably the most important measure, however, is the

RL after the interruption for both conditions. As is evident

in Fig. 3, the model matches the data quite well; root mean

square deviation (RMSD) ¼ 1:5. Critically, all model data

are within 95% confidence intervals of the empirical data.

IV. SUMMARY OF EXPERIMENT 1

The MFG model showed an excellent fit to the experi-

mental data. However, as with all model fitting paradigms,

it is possible that the model will not generalize to other

situations because the cognitive processes, parameters,

participants, or experimental task may be idiosyncratic or

the model was overfit. The approach we have chosen to

deal with these issues here is one of strong cross validation
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and prediction. We will take our current model and run it
on our robot as it plays the part of a listener. The model

will attempt to predict when someone needs help and then

provide a reminder to the storyteller. Participants will be

from a different group than the first experiment as well. If

the overall system is able to successfully help people in

their resumption process, we will assume that the model

accurately describes the cognitive processes involved in

interruption resumption.

V. EXPERIMENT 2

Our primary goal with this experiment was to determine if

our MFG process model of resumption after an interrup-

tion could predict when people would need help. Our

MFG model was put on our robot platform (described be-

low) and run as a model of the speaker. After an inter-
ruption, if the model was not able to retrieve where the

person left off, the model assumed that the person had

forgotten as well, so would spontaneously attempt to help.

If the model was able to retrieve where the person left off,

the model assumed that the person had as well and would

not offer help.

A. Method

Participants: Twenty two employees at the U.S. Naval

Research Laboratory (NRL) participated in this study.

Eleven of the participants were men and 11 of the parti-

cipants were women. The average age of participants was

42 years old.

Task and Materials: The story and story-retelling task
were identical to experiment 1.

Robot Description: Our current robot platform is the

mobile–dexterous–social (MDS) robot [23]. The MDS ro-

bot neck has 18 degrees of freedom for the head, neck, and

eyes allowing the robot to look at various locations in 3-D

space. Perceptual inputs include two color video cameras

and an SR3000 camera to provide depth information. Fig. 5
shows a photo of Octavia, the MDS robot used in this study.

Our usual operation is to use ACT-R as our robot con-

troller (see [12], [16], and [24]–[26] for our approach on

this). In this case, for the responsive robot partner (see

below), we utilized two ACT-R models. The host model

directed the robot’s listening behavior and interaction with

the participant. The host model was also responsible for

the execution of the slave MFG model of the participant.
This slave model of the participant starts at the interrup-

tion point and runs while the participant reads the subse-

quent story elements. When the participant was done

reading, the experimenter signaled the slave MFG model

that the resumption had begun. At this time, the MFG

model attempts to recover its previous episodic tag. The

model’s success or failure is reported back to the host

model. If the MFG model fails to retrieve its previous goal,

the host prompts the participant; otherwise, the host

resumes its listening behavior.
The responsive host model’s listening behavior con-

sisted of simple behavioral components. The robot visually

fixated on and tracked the speaker using a fiducial [27]

attached to a hat worn by participants. Additionally, the

robot would occasionally blink and nod during its inter-

action with the participant. This small level of interactivity

was used to push people towards believing that the robot

had basic social competencies [28]. People will, for exam-
ple, follow a robot’s gaze [29], attribute personality and

gender stereoptypes to computers/robots [28], [30], and

willingly anthropomorphize robots with very little evi-

dence that the robot can think or act for itself [31]–[33].

We hoped that the combination of following the person as

they moved their head around, nodding, and blinking

would encourage the participant to feel like the robot was

actively listening to the story.

Design and Procedure: The design of this experiment had

two conditions: a responsive robot partner and a control

condition with an unresponsive robot partner. All parti-

cipants in this study were interrupted. As in experiment 1,

the experimenter Bforgot[ to give the participants part of

the story; after they had finished reading it, they were

asked to resume where they left off.

Fig. 5. An image of the MDS robot that was used in experiment 2.
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In the control condition, the robot did not move nor
did it help the participant remember where they left off;

this condition was similar to our video camera condition

from experiment 1. In the responsive robot condition, the

robot not only nodded and followed the person’s face as

she/he told the story, but if the MFG model could not

remember where the person left off, it assumed that the

person could not either, so provided the participant with

an appropriate prompt (e.g., BI think you were telling me
about Haley’s father[).

This specific prompt worked because the experimenter

interrupted the user at the same point in the story every

time, so the resumption utterance made sense for parti-

cipants. If a functional natural language system was able to

provide us gist information, we could have used that, but at

this point in time, natural language systems are not suf-

ficiently advanced to provide this information to our
models. If the person was able to resume the story before

the model had made a decision, the experimenter can-

celled the MFG model. In either case, the robot resumed

its listening behavior.

Note that the MFG model partially tailored itself to

each participant. If the participant was a fast reader, the

interruption duration would be shorter than average and

the probability that the person (and the model) would
remember where they left off was higher than average. In

contrast, if a participant was a slow reader, the interrup-

tion duration was longer, and the episodic trace would

have had a longer chance to decay, so would be more

difficult to remember. Neither the host model nor the

MFG model used any social cues of the user (e.g., long

pauses or disfluencies, facial expressions, asking for help,

etc.). Thus, this was a very pure predictive MFG model.
After the experiment was completed, all participants

were given a short exit questionnaire and debriefed.

As in experiment 1, all participants were videotaped.

After debriefing, they could choose to have their videotape

destroyed. No participants in experiment 2 asked for their

videotapes to be destroyed.

Measures and Coding: Interruption duration was again
coded as the time between the start of the interruption and

the end of the interruption. Participants’ videotapes were

again evaluated for whether they needed help using the

same criteria as in experiment 1. In the responsive robot

condition, we also recorded whether the robot offered help

to the participant. As in experiment 1, all participants were

eventually able to resume the story.

The exit questionnaire consisted of three questions.
1) BPlease rate how natural the robot was as a conversa-

tional partner.[ 2) BPlease rate how useful the robot was as

a conversational partner.[ 3) BPlease rate how comfortable
you were with conversing with the robot.[ Participants

answered each question on a 1–7 Likert scale where 1 was

Bcompletely unnatural/nonuseful/uncomfortable[ and 7

was Bcompletely natural/useful/comfortable.[

B. Results

Interruption Duration: Participants spent an average of

251 s reading the interrupted story. Their interruption

durations ranged from 128 to 709 s. Participants in the

responsive condition (M ¼ 260 s) did not spend any longer

reading the interrupted story than participants in the con-

trol condition (M ¼ 233 s), Fð1; 20Þ G 1, MSE ¼ 17206, n.s.

Needing Help: Participants did not differ in the amount

of help they needed across conditions (79% versus 87%),

�2ð1;N ¼ 22Þ ¼ 1:1, p > 0:10.

Robot Helping Evaluation: In the control condition, the

unresponsive robot did not offer help at all (by design). In

the responsive robot condition, the robot helped 80% of

the time. Clearly, the responsive robot attempted to help
participants when it thought they needed help. To evaluate

whether the robot helped people when they actually

needed help, we performed a signal detection analysis.

In order to quantitatively determine the overall robust-

ness of the model in its helping behavior (i.e., to determine

whether the robot helped people when they actually

needed help), a signal detection/d0 analysis was performed

[34]. To perform this analysis, we calculated the hit rate
and the false alarm rate. The hit rate is the number of times

that the person needed help and got help divided by the

total number of times that the person needed help (re-

gardless of whether the robot helped). The false-alarm rate

is the number of times the robot helped but the person did

not need help divided by the total number of times the

person did not need help. A d0 score is the z score differ-

ence between the hit rate and the false alarm rate; a higher
d0 is better than a lower d0.

In the responsive-robot condition, the hit rate was 1

while the false alarm rate was 0.3, leading to a d0 of 4.8,

suggesting that the robot was helping primarily when the

person needed help and not helping when the person did

not need help.

In the control condition, the robot did not help, of

course. However, it was possible to run the model multiple
times and to match the model inputs for each participant

in the control condition (in this case, interruption dura-

tion). Because each model run is probabilistic, we averaged

each of ten model runs to give us a probability of helping. If

the probability was 70% or greater, we assumed that the

model would have helped the participant if the predictive

model had been running. We found that in the control

condition, the hit rate was 0.71 while the false alarm rate
was 0, leading to a d0 of 4.8. This result suggests that if the

memory for goals model had been activated in the control

condition, it would have helped a majority of participants.

Subjective Evaluation of Robot’s Helping Behavior: Ano-

ther way to evaluate the performance of the robot was to

determine how participants felt towards the robotVtheir

Trafton et al. : Building and Verifying a Predictive Model of Interruption Resumption

656 Proceedings of the IEEE | Vol. 100, No. 3, March 2012



subjective impressions. In general, participants were quite
comfortable with the robot (M ¼ 5:1 on a seven-point

scale). Participants who received help (M ¼ 5:5) felt mar-

ginally more comfortable with the robot than participants

who did not receive help (M ¼ 4:5), Fð1; 20Þ ¼ 4:0,

MSE ¼ 1:6, p G 0:06. Participants who received help

(M ¼ 4:5) also felt that the responsive robot was more

natural than the participants who did not receive help

(M ¼ 2:6), Fð1; 20Þ ¼ 11:4, MSE ¼ 1:8, p G 0:05. Most
importantly, participants who received help (M ¼ 4:2)

found the help provided to be more useful than partici-

pants who did not receive help (M ¼ 2:9), Fð1; 20Þ ¼ 5:1,

MSE ¼ 1:7, p G 0:05. At one level it is not surprising that,

when the robot helped, people found it more useful than a

robot that simply nodded or did nothing at all. However,

the helping behavior was a single instance of help and

could have been perceived as irritating if the person had
already remembered the last thing they had said. This

finding was not due to the social aspects of the responsive

robot; participants in the responsive robot condition

(M ¼ 4) did not see the robot as more useful than parti-

cipants in the control condition (M ¼ 2:9), Fð1; 20Þ ¼ 3:4,

MSE ¼ 6:4, n.s. Finally, note that in all cases, participants

who received help had ratings above the midpoint.

C. Discussion
This experiment had several goals. First, we wanted to

explore the storytelling paradigm with a completely differ-

ent population group. Along several measures, the two

participant groups were quite different. In experiment 1,

all of the participants were women, while in experiment 2

there was an even split of men and women. Also, the age of

the participants in experiment 2 was more than twice that
of experiment 1 (42 versus 20).

The results of this experiment were quite strong with

respect to the success of the predictive model. We found

that when the robot was running a predictive model of the

person as they resumed the story, it helped people that

actually needed help. For those participants who needed

help in the control condition, the model accurately pre-

dicted that they would have needed help. Finally, when the
model did in fact help, people found that help useful.

These findings strongly suggest that the predictive model

was successful.

One of the primary goals of this study was to show that a

cognitive science theory based on people’s memory system

could be used to predict when an individual needs help

resuming after an interruption. Experiment 2 used the

exact same model used to match data from experiment 1 to
predict when a participant would need help. The model

showed success from both a technological perspective (a

model of human cognition running on an embodied robotic

agent) and a scientific perspective (a model predicting

human performance a few seconds into the future).

The model tailored itself to individual performance and

that made it somewhat sensitive to individual differences.

The fact that people who got help from the robot found the
robot more useful than participants who did not receive

help suggests that when the robot did help the participant

resume their storytelling, it was being helpful, and there-

fore, the predictive model was correct most of the time.

The fact that some people did not need help (e.g., they

resumed without any problems) suggests that if the robot

had helped everyone, it would have been more irritating

than helpful because people in general do not like to be
offered help when it is not needed [35].

Given the single-instance nature of the task, this par-

ticular model had no real opportunities to learn. However,

ACT-R’s existing learning mechanisms could be applied

to learn the specific parameters. The existing temporal-

discounted utility learning mechanism would enable the

model to learn when best to apply the productions under-

lying MFG. The specific model parameters used in this
experiment would need to be learned over time as it gained

experience.

It should also be reemphasized that this model did not

take a person’s social cues into account. It is very clear

after listening to a person struggle to remember something

that they give cues that they need helpVthey may have a

confused look on their face, they may make a series of false

starts or disfluencies or even ask explicitly for help. The
overall system could likely be improved by taking these

social and linguistic cues into account. It is our strong

prediction that a system that is able to integrate memory,

linguistic cues, and social cues would be an overall

stronger model.

One other significant aspect of this experiment is that

the robot had partial autonomy to perform some tasks. Its

primary functionVto help people resume where they left
offVwas an autonomous decision. It was not completely

autonomous because the experimenter had to tell the robot

whether the person had resumed the story. This finding is

important because there are relatively few experiments

with physical robots interacting with people in an auto-

nomous manner.

VI. GENERAL DISCUSSION

The approach that we used in this report was novel and

successful. Our approach was to run a study to understand

how people resume a story after an interruption (exper-

iment 1). From that data, we built a process model of the

event of interest (the resumption itself) using a compu-

tational cognitive architecture (ACT-R/E) and an existing

theoretical framework (MFG). The process model was
then matched to the experimental data, showing a tight fit

with experimental data. This process model/experimental

data fit showed that the process model is a reasonable

theoretical account of how people resume a storytelling

event after being interrupted. After the strong model fit,

the model was placed on an embodied robotic platform and

the model was applied to a completely different group of

Trafton et al. : Building and Verifying a Predictive Model of Interruption Resumption

Vol. 100, No. 3, March 2012 | Proceedings of the IEEE 657



participants and run as a predictive model (experiment 2).
The predictive model did, in fact, successfully predict

when people needed help after resuming a story and then

provided a reminder of the last gist event that occurred

before the interruption. People who received help from the

embodied cognitive model were comfortable with the ro-

botic system and found the robotic system to be more

natural and more useful than participants who did not

receive help.
The results from these two experiments have implica-

tions for a number of areas. First, the MFG theory we used

to build the process model has traditionally been used to

explain behavior and cognition on computer-based tasks

[4], [8], [36]–[41]. This series of studies now suggests that

the MFG model can robustly predict interruption and

resumption performance in a different domain, which

expands the theory’s coverage.
Second, the MFG process model provides some details

about how initial transactive memory occurs. Specifically,

the model suggests that if people are alone, and cannot

remember what they were doing, they will simply query

memory or take other approaches until they eventually

succeed or decide to give up. In contrast, if there is some-
one else available and an individual cannot remember

where they were, they will ask the other person. While we

did not model it in this project, it follows that the second

person will occasionally rehearse the resumption point

during the interruption and be able to help the interrupted

individual. The rehearsal will allow them to remember the

resumption point better than the interrupted person. As an

individual becomes familiar with another’s interests, this
process may become more routine and specific so that

people learn to rely on each other’s knowledge and abilities.

Finally, while there are many examples of strong theo-

ries in cognitive science, relatively few of them are able to

predict a phenomenon at both qualitative and quantitative

levels. The current MFG model is predictive in the strong

sense of the word: it not only predicts when someone has

forgotten a key fact, but also changes behavior by remind-
ing them.

This series of studies shows that running predictive

models of human cognition and behavior on an autono-

mous platform to facilitate human–robot interaction is

now a reality. h
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